Abstract
While performing a simple bouncing task, humans modify their preferred movement period and pattern of plantarflexor activity in response to changes in system mechanics. Over time, the preferred movement pattern gradually adapts toward the resonant frequency. The purpose of the present experiments was to determine whether humans undergo a similar process of gradually adapting their stride period and plantarflexor activity after a change in mechanical demand while walking. Participants walked on a treadmill while we measured stride period and plantarflexor activity (medial gastrocnemius and soleus). Plantarflexor activity during stance was divided into a storage phase (30-65% stance) and a return phase (65-100% stance) based on when the Achilles tendon has previously been shown to store and return mechanical energy. Participants walked either on constant inclines (0%, 1%, 5%, 9%) or on a variable incline (0-1%) for which they were unaware of the incline changes. For variable-incline trials, participants walked under both single-task and dual-task conditions in order to vary the cognitive load. Both stride period and plantarflexor activity increased at steeper inclines. During single-task walking, small changes in incline were followed by gradual adaptation of storage-phase medial gastrocnemius activity. However, this adaptation was not present during dual-task walking, indicating some level of cognitive involvement. The observed adaptation may be the result of using afferent feedback in order to optimize the contractile conditions of the plantarflexors during the stance phase. Such adaptation could serve to improve metabolic economy but may be limited in clinical populations with disrupted proprioception.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.