Abstract

We report evolution of electric characteristics of an electric double layer field-effect transistor based on the ionic liquid/rubrene single crystal interfaces. In contrast to usual devices, the field effect mobility was found to gradually increase with time for a day, followed by minor long-term fluctuations. Although the details of the evolution were somewhat device dependent, the final values of the mobility turned out to be 3–4 times larger irrespective of the initial values. These observations are explained by the evolution of the flat interface by defect-induced spontaneous dissolution of rubrene molecules at the ionic liquid/rubrene single crystal interfaces, revealed by frequency modulation atomic force microscopy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call