Abstract

Complex shape and texture representations are known to be constructed from V1 along the ventral visual pathway through areas V2 and V4, but the underlying mechanism remains elusive. Recent study suggests that, for processing of textures, a collection of higher-order image statistics computed by combining V1-like filter responses serves as possible representations of textures both in V2 and V4. Here, to gain a clue for how these image statistics are processed in the extrastriate visual areas, we compared neuronal responses to textures in V2 and V4 of macaque monkeys. For individual neurons, we adaptively explored their preferred textures from among thousands of naturalistic textures and fitted the obtained responses using a combination of V1-like filter responses and higher-order statistics. We found that, while the selectivity for image statistics was largely comparable between V2 and V4, V4 showed slightly stronger sensitivity to the higher-order statistics than V2. Consistent with that finding, V4 responses were reduced to a greater extent than V2 responses when the monkeys were shown spectrally matched noise images that lacked higher-order statistics. We therefore suggest that there is a gradual development in representation of higher-order features along the ventral visual hierarchy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.