Abstract

Attenuated total reflection (ATR) spectroscopy is used as an in vitro optical approach for the diagnosis and characterization of cell and tissue pathology. In comparison with the more conventional FTIR microspectroscopy that relies on transmission of IR radiation, ATR spectroscopy uses the evanescent wave technique, which is a step forward toward in vivo research. The aim of the present investigation was to examine the potential of ATR spectroscopy to differentiate between drug-resistant and drug-sensitive melanoma cell lines. We studied two human melanoma parental cell lines, GA and BG, and their cisplatin-resistant counterparts, GAC and BGC, respectively, which were derived by survival selection with this anticancer drug. Cisplatin cytotoxicity was measured on the four cell lines, and their relative resistance to cisplatin was established: BGC > BG > GAC > GA. Different resistance mechanisms were noticed between the two parental groups in accordance with their spectrum. ATR spectra-based cluster analysis of the selective biomarkers, such as phosphate and RNA/DNA, were found useful in differentiating sensitive from resistant cells. Normalized and absolute values of the differences between spectra were employed to compare between the two parental groups. It was possible to predict the relative cisplatin resistance between the cell lines using the discriminant classifying function. The success rates in predicting cisplatin resistance in these cells was 88 and 81% for GA versus GAC and BG versus BGC, respectively. These results support the further development of the ATR technique as a simple, in vitro, reagent-free method to identify drug resistance in cancer cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call