Abstract

To accurately evaluate the overall corrosion degree of reinforced concrete (RC) beams, on the basis of the SMFL technology, the overall random corrosion detection experiment of six RC beams was carried out. The relationship between the tangential component By and the normal component Bz of the magnetic induction intensity and corrosion degree was analyzed, and a multidefect magnetic dipole model was established. The correlation between the average corrosion ratio C of the RC beam and the magnetic characteristic index KG was emphatically explored. The results showed that, with the increase in the average corrosion ratio C, the magnetic characteristic index KG showed an increasing trend as a whole. The index KG could weaken the influence of different historical magnetizations, but it had a certain dispersion. On the basis of the correlation and the Naive Bayesian model, the average corrosion ratio C was divided into four grades. The probability of C falling in different value ranges can be quantitatively evaluated using the KG magnetic characteristic index. The reliability is as high as 97.4% and as low as 56.8% so as to realize the quantitative grading evaluation of the corrosion of the rebar in the RC beam.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.