Abstract

BackgroundMany clinical predictive tools have been developed to diagnose traumatic brain injury among children and guide the use of computed tomography in the emergency department. It is not always feasible to compare tools due to the diversity of their development methodologies, clinical variables, target populations, and predictive performances. The objectives of this study are to grade and assess paediatric head injury predictive tools, using a new evidence-based approach, and to provide emergency clinicians with standardised objective information on predictive tools to support their search for and selection of effective tools.MethodsPaediatric head injury predictive tools were identified through a focused review of literature. Based on the critical appraisal of published evidence about predictive performance, usability, potential effect, and post-implementation impact, tools were evaluated using a new framework for grading and assessment of predictive tools (GRASP). A comprehensive analysis was conducted to explain why certain tools were more successful.ResultsFourteen tools were identified and evaluated. The highest-grade tool is PECARN; the only tool evaluated in post-implementation impact studies. PECARN and CHALICE were evaluated for their potential effect on healthcare, while the remaining 12 tools were only evaluated for predictive performance. Three tools; CATCH, NEXUS II, and Palchak, were externally validated. Three tools; Haydel, Atabaki, and Buchanich, were only internally validated. The remaining six tools; Da Dalt, Greenes, Klemetti, Quayle, Dietrich, and Güzel did not show sufficient internal validity for use in clinical practice.ConclusionsThe GRASP framework provides clinicians with a high-level, evidence-based, comprehensive, yet simple and feasible approach to grade, compare, and select effective predictive tools. Comparing the three main tools which were assigned the highest grades; PECARN, CHALICE and CATCH, to the remaining 11, we find that the quality of tools’ development studies, the experience and credibility of their authors, and the support by well-funded research programs were correlated with the tools’ evidence-based assigned grades, and were more influential, than the sole high predictive performance, on the wide acceptance and successful implementation of the tools. Tools’ simplicity and feasibility, in terms of resources needed, technical requirements, and training, are also crucial factors for their success.

Highlights

  • Many clinical predictive tools have been developed to diagnose traumatic brain injury among children and guide the use of computed tomography in the emergency department

  • These research-based applications quantify the contributions of relevant patient characteristics to derive the likelihood of diseases, predict their courses and possible outcomes, or support the decision making on their management [9,10,11]

  • The Paediatric Emergency Care Applied Research Network (PECARN) and the CHALICE rules were evaluated for potential effect on healthcare, while the remaining 12 tools were only evaluated for predictive performance

Read more

Summary

Introduction

Among the healthcare areas that are increasingly utilising predictive tools is the emergency department (ED) [11, 12] Some of these tools have been demonstrated to support EDs to overcome many of the encountered challenges, such as overcrowding of patients, lack of resources, variable acuity and diversity of clinical conditions [13, 14]. They have the potential to help clinicians to improve effectiveness through achieving better clinical outcomes, improve efficiency by reducing costs, and improve patient safety by minimising complications and unintended consequences [15,16,17]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.