Abstract
The authors report the implementation of geometry gradients for quasirelativistic two-component Hartree-Fock and density functional methods using either the zero-order regular approximation Hamiltonian or spin-dependent effective core potentials. The computational effort of the resulting program is comparable to that of corresponding nonrelativistic calculations, as it is dominated by the evaluation of derivative two-electron integrals, which is the same for both types of calculations. Besides the implementation of derivatives of matrix elements of the one-particle Hamiltonian with respect to nuclear displacements, the calculation of the derivative exchange-correlation energy for the open shell case involves complicated expressions because of the noncollinear approach chosen to define the spin density. A pilot application to dihalogenides of element 116 shows how spin-orbit coupling strongly affects the chemistry of the superheavy p-block elements. While these molecules are bent at a scalar-relativistic level, spin-orbit coupling is so strong that only the 7p3/2 atomic orbitals of element 116 are involved in bonding, which favors linear molecular geometries for dihalogenides with heavy terminal halogen atoms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.