Abstract

SummaryThis paper presents new linearity‐preserving nodal limiters for enforcing discrete maximum principles in continuous (linear or bilinear) finite element approximations to transport problems with steep fronts. In the process of algebraic flux correction, the oscillatory antidiffusive part of a high‐order base discretization is decomposed into a set of internodal fluxes and constrained to be local extremum dim inishing. The proposed nodal limiter functions are designed to be continuous and satisfy the principle of linearity preservation that implies the preservation of second‐order accuracy in smooth regions. The use of limited nodal gradients makes it possible to circumvent angle conditions and guarantee that the discrete maximum principle holds on arbitrary meshes. A numerical study is performed for linear convection and anisotropic diffusion problems on uniform and distorted meshes in two space dimensions. Copyright © 2017 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.