Abstract

Topology optimization for additive manufacturing has been limited to the component-level designs with the component size smaller than the printer’s build volume. To enable the design of structures larger than the printer’s build volume, this paper presents a gradient-based multi-component topology optimization framework for structures assembled from components built by additive manufacturing. Constraints on component geometry for additive manufacturing are incorporated in the density-based topology optimization, with additional design variables specifying fractional component membership. For each component, constraints on build size, enclosed voids, overhangs, and the minimum length scale are imposed during the simultaneous optimization of overall base topology and component partitioning. The preliminary result on a minimum compliance structure shows promising advantages over the conventional monolithic topology optimization. Manufacturing constraints previously applied to monolithic topology optimization gain new interpretations when applied to multi-component assemblies, which can unlock richer design space for topology exploration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call