Abstract

Dealing with planning problems with both logical relations and numeric changes in real-world dynamic environments is challenging. Existing numeric planning systems for the problem often discretize numeric variables or impose convex constraints on numeric variables, which harms the performance when solving problems, especially when the problems contain obstacles and non-linear numeric effects. In this work, we propose a novel algorithm framework to solve numeric planning problems mixed with logical relations and numeric changes based on gradient descent. We cast the numeric planning with logical relations and numeric changes as an optimization problem. Specifically, we extend the syntax to allow parameters of action models to be either objects or real-valued numbers, which enhances the ability to model real-world numeric effects. Based on the extended modeling language, we propose a gradient-based framework to simultaneously optimize numeric parameters and compute appropriate actions to form candidate plans. The gradient-based framework is composed of an algorithmic heuristic module based on propositional operations to select actions and generate constraints for gradient descent, an algorithmic transition module to update states to the next ones, and a loss module to compute loss. We repeatedly minimize loss by updating numeric parameters and compute candidate plans until it converges into a valid plan for the planning problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.