Abstract
We study the behaviour of non-convex functionals singularly perturbed by a possibly oscillating inhomogeneous gradient term, in the spirit of the gradient theory of phase transitions. We show that a limit problem giving a sharp interface, as the perturbation vanishes, always exists, but may be inhomogeneous or anisotropic. We specialize this study when the perturbation oscillates periodically, highlighting three types of regimes, depending on the frequency of the oscillations. In the two extreme cases, a separation of scales effect is described.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society of Edinburgh: Section A Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.