Abstract
Gradient theory (GT), a form of density functional theory (DFT), was applied to water, methanol, and ethanol using the cubic perturbed hard body (CPHB) equation of state (EOS). Compared to the standard form of classical nucleation theory (CNT), the GT results for water showed an improved temperature dependence, but the supersaturation dependence was slightly poorer. GT and several forms of CNT were also found to be in good agreement with a single high T molecular dynamics rate for TIP4P water. The rates predicted by GT for methanol and ethanol were improved by several orders of magnitude compared to CNT, but no improvement in the predicted temperature dependence of the rates was found.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.