Abstract

Single-phase multiferroics suffer from a fundamental contradiction between polarity and magnetism in d0 electronic configuration, motivating studies of unconventional ferroelectricity in magnetic oxides. However, low critical temperature and polarization still need to be overcome. Here, it is reported that the switchable polarization behavior at room temperature in [(La2 NiMnO6 )/(La2 CoMnO6 )]n double-perovskite magnetic superlattice films is achieved by engineering a microstructure with gradient strains, and the ferromagnetic Curie temperature did not show a rapid decrease. The synergy of gradient strains and superlattice components plays a decisive role in inducing ferroelectricity via the tilting or rotation of various oxygen octahedra. Such distortion responses to gradient strains are accompanied by slight magnetic fluctuations, maximizing the preservation of the initial magnetic exchange interactions, which alleviates the contradiction of multiferroic coexistence to a certain extent. This work confirms the room-temperature ferroelectricity in double-perovskite superlattices and provides a preferred strategy for confronting the difficulty of multiferroic coexistence in single-phase materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.