Abstract

We obtain an asymptotic expansion for the null distribution function of the gradient statistic for testing composite null hypotheses in the presence of nuisance parameters. The expansion is derived using a Bayesian route based on the shrinkage argument described in [10]. Using this expansion, we propose a Bartlett-type corrected gradient statistic with chi-square distribution up to an error of order $o(n^{-1})$ under the null hypothesis. Further, we also use the expansion to modify the percentage points of the large sample reference chi-square distribution. Monte Carlo simulation experiments and various examples are presented and discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.