Abstract
It is well-known that the backward differentiation formulae (BDF) of order 1, 2 and 3 are gradient stable. This means that when such a method is used for the time discretization of a gradient flow, the associated discrete dynamical system exhibit properties similar to the continuous case, such as the existence of a Lyapunov functional. By means of a Lojasiewicz–Simon inequality, we prove convergence to equilibrium for the 3-step BDF scheme applied to the Allen–Cahn equation with an analytic nonlinearity. By introducing a notion of quadratic-stability, we also show that the BDF methods of order 4 and 5 are gradient stable, and that the k-step BDF schemes are not gradient stable for . Some numerical simulations illustrate the theoretical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.