Abstract

Mapping B0-field and shim functions spatially is a crucial step in the gradient shimming. The conventional estimation method used in the phase difference imaging technique takes no account for noise and T2∗ effects, and is prone to create noisy and distorted field maps. This paper describes a new gradient shimming based on the regularized estimation for B0-field and shim functions. Based on a statistical model, the B0-field and shim function maps are estimated by a Penalized Maximum Likelihood method that minimizes two regularized least-squares cost functions, respectively. The first cost function of B0-field exploits the two facts that the noise in the phase difference measurements is Gaussian and the B0-field maps tend to be smooth. And the other one adds an additional fact that each shim function corresponds to a given spherical harmonic of the magnetic field. Significant improvements in the quality of field mapping and in the final shimming results are demonstrated through computer simulations as well as experiments, especially when the magnetic field homogeneity is poor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.