Abstract

Nonlinear transport phenomena induced by chiral anomaly are explored within a 4D field theory defined holographically as U(1)_Vtimes U(1)_A Maxwell–Chern–Simons theory in Schwarzschild-AdS_5. In presence of weak constant background electromagnetic fields, the constitutive relations for vector and axial currents, resummed to all orders in the gradients of charge densities, are encoded in nine momenta-dependent transport coefficient functions (TCFs). These TCFs are first calculated analytically up to third order in gradient expansion, and then evaluated numerically beyond the hydrodynamic limit. Fourier transformed, the TCFs become memory functions. The memory function of the chiral magnetic effect (CME) is found to differ dramatically from the instantaneous response form of the original CME. Beyond hydrodynamic limit and when external magnetic field is larger than some critical value, the chiral magnetic wave (CMW) is discovered to possess a discrete spectrum of non-dissipative modes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.