Abstract

Monomer reactivity ratios in controlled radical copolymerization of styrene (S) and methyl acrylate (MA) monomers at 120 °C were determined. The Fineman–Ross method was used to calculate rs and rMA. Using this method, monomer reactivity ratio values of 0.89 and 0.22 were calculated for styrene and methyl acrylate, respectively. Because of the different reactivity ratios between the two monomers, and according to the molar fractions of two monomers, S/MA statistical or gradient copolymers were synthesized by nitroxide-mediated polymerization. Indeed, for different monomer ratios, the same statistical or gradient copolymers can be obtained by batch nitroxide mediated polymerization. These copolymers have been characterized by 1H nuclear magnetic resonance and size exclusion chromatography, and evolution of the composition has been correlated with the glass transition temperature measured by differential scanning calorimetry. Integrated intensities of the three observed peaks of (–OCH3) group in the 1H NMR spectra were used to determine the MA/MA/MA, MA/MA/S and S/MA/S triad sequences in the copolymers. Specific organization at the air/polymer interface of such copolymers has also been demonstrated by comparison between classical and attenuated total reflection (ATR) Fourier transform infra-red spectra.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call