Abstract

In this study, a high-strain rate ultra-precision machining technology named single point cubic boron nitride turning is developed to fabricate a gradient nanotwinned CrCoNi medium entropy alloy layer. The grain size of the ~ 150 µm-thick gradient layer is gradually refined from the original ~ 17 µm to ~ 25 nm in the topmost surface, exhibiting a significantly enhanced yield strength (from ~ 450 MPa to ~ 1100 MPa) and well-retained ductility of ~ 27%. High-resolution transmission electron microscope and atomistic simulations were mainly performed to unveil the size-dependent twinning mechanisms governing the gradient refinement process from the core to the topmost surface, i.e. transiting from the parallel twins segmenting ultrafine grains, twin-twin intersections refining rhombic blocks and rotating the intersected nanograins, and finally to the zero-macrostrain deformation nanotwinning in the refined nanograins. The machining process provides sufficient equivalent stress to activate the twinning partials for forming the gradient nanotwinned structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.