Abstract

ABSTRACT In this paper, we consider gradient methods for minimizing smooth convex functions, which employ the information obtained at the previous iterations in order to accelerate the convergence towards the optimal solution. This information is used in the form of a piece-wise linear model of the objective function, which provides us with much better prediction abilities as compared with the standard linear model. To the best of our knowledge, this approach was never really applied in Convex Minimization to differentiable functions in view of the high complexity of the corresponding auxiliary problems. However, we show that all necessary computations can be done very efficiently. Consequently, we get new optimization methods, which are better than the usual Gradient Methods both in the number of oracle calls and in the computational time. Our theoretical conclusions are confirmed by preliminary computational experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.