Abstract

Angle-sensitive photodetectors are a promising device technology for many advanced imaging functionalities, including lensless compound-eye vision, lightfield sensing, optical spatial filtering, and phase imaging. Here we demonstrate the use of plasmonic gradient metasurfaces to tailor the angular response of generic planar photodetectors. The resulting devices rely on the phase-matched coupling of light incident at select geometrically tunable angles into guided plasmonic modes, which are then scattered and absorbed in the underlying photodetector active layer. This approach naturally introduces sharp peaks in the angular response, with smaller footprint and reduced guided-mode radiative losses (and therefore improved spatial resolution and sensitivity) compared to analogous devices based on diffractive coupling. More broadly, these results highlight a promising new application space of flat optics, where gradient metasurfaces are integrated within image sensors to enable unconventional capabilities with enhanced system miniaturization and design flexibility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.