Abstract

We report the design and development of a compact electron and positron spectrometer based on tapered neodymium iron boron magnets to characterize the pairs generated in laser-matter experiments. The tapered design forms a gradient magnetic field component allowing energy dependent focusing of the dispersed charged particles along a chosen detector plane. The mirror symmetric design allows for simultaneous detection of pairs with energies from 2 MeV to 500 MeV with an accuracy of ≤10% in the wide energy range from 5 to 110 MeV for a parallel beam incident on a circular aperture of 20 mm. The energy resolution drops to ≤20% for 4-90 MeV range for a divergent beam originating from a point source at 20 cm away (i.e., a solid angle of ∼8 milli steradians), with ≤10% accuracy still maintained in the narrower energy range from 10 to 55 MeV. It offers higher solid angle acceptance, even for the divergent beam, compared to the conventional pinhole aperture-based spectrometers. The proposed gradient magnet is suitable for the detection of low flux and/or monoenergetic type electron/positron beams with finite transverse sizes and offers unparalleled advantages for gamma-ray spectroscopy in the intermediate MeV range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.