Abstract

Lithium metal anode has attracted wide attention due to its ultrahigh theoretical specific capacity, lowest reduction potential, and low density. However, uncontrollable dendritic growth and volume change caused by uneven Li+ deposition still seriously hinder the large-scale commercial application of lithium metal batteries, even causing serious battery explosions and other safety problems. Hence, gold nanoparticles with a gradient distribution anchored on 3D carbon fiber paper (CP) current collectors followed by the encapsulation of polydopamine (PDA) (CP/Au/PDA) are constructed for stable and dendrite-free Li metal anodes for the first time. Significantly, lithiophilic Au nanoparticles showing a gradient distribution in the carbon fiber paper could guide the transfer of Li+ from the outside to the inside of the CP/Au/PDA electrode as well as lower the nucleation overpotential of Li, thereby obtaining the uniform Li deposition. Meanwhile, the PDA layer could in situ be converted to Li-PDA which could serve as an efficient Li+ conductor to further facilitate uniform Li+ transport among the whole CP/Au/PDA electrode. Besides, 3D carbon fiber paper could effectively accommodate the volume change during the plating/stripping process of Li metal. As a result, CP/Au/PDA electrodes deliver a low nucleation overpotential (∼9 mV) and a high Coulombic efficiency (mean value of ∼98.8%) at a current density of 1 mA cm-2 with the capacity of 1 mA h cm-2. Furthermore, Li@CP/Au/PDA electrodes also can demonstrate an ultralow voltage hysteresis (∼20 mV) and a long cycle life (1000 h) in symmetric cells. Finally, with LiFePO4 (LFP) as the cathode, the Li@CP/Au/PDA-LFP full cell delivers a high discharge capacity of 136 mA h g-1 even after 350 cycles at 1C, exhibiting a per cycle loss as low as 0.01%. This gradient lithium ion regulation current collector is of great significance for the development of lithium metal anodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.