Abstract

We survey some results about multiplicity of certain classes of entire solutions to semilinear elliptic equations or systems of the form $-\Delta u = F_{u}(x, u)$, $x\in\mathbb{R}^{N+1}$, including the Allen Cahn or the stationary Nonlinear Schr\"odinger case. In connection with this kind of problems we study some metric separation properties of sublevels of the functional $V(u) = \tfrac 12\|\nabla u\|_{H^{1}(\mathbb{R}^{N})}^{2}-\tfrac 1{p+1}\| u\|_{L^{p+1}(\mathbb{R}^{N})}^{p+1}$ in relation to the value of the exponent $p+1\in (2, 2^{*}_{N})$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.