Abstract

Resonant vibrations of implanted structures during a magnetic resonance imaging (MRI) procedure pose a risk to the patient in the form of soft tissue irritation and degradation of the implant. In this paper, the mechanical behavior of implant structures in air, water, and viscoelastic materials was explored. The static and dynamic transfer functions of various test samples in air and immersed in both water and hydrogels were analyzed. The laser-based acquisition method allowed for high-angular-resolution (10 μDeg) and high-dynamic-range (0-6 kHz) measurements. Additional MRI experiments were conducted to investigate the dependence of vibration strength on magnetic resonance (MR) sequence parameters in combination with the obtained transfer functions. The largest forces were found to be in the micronewton to millinewton range, which is comparable to forces applied during implantation. Of additional concern was the damping introduced by viscoelastic tissue, which was less than expected, leading to an underdamped system. In contrast to current wisdom, the imaging experiments demonstrated drastically different vibration amplitudes for identical gradient slew rates, but different timing parameters TR, mainly due to resonant amplification. The results showed that a safe force-free MR procedure depends not only on the gradient slew rate, but also and more drastically on the choice of secure timing parameters. These findings delineate design improvements to achieve longevity of implants and will lead to increased patient safety during MRI. A prudent choice of mechanical characteristics of implanted structures is sufficient to avoid resonant excitation due to mismatched MR sequence parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.