Abstract

We present a gradient-index crystal that offers extreme tunability in terms of manipulating the propagation of elastic waves. For small-amplitude excitations, we achieve control over wave transmission depth into the crystal. We numerically and experimentally demonstrate a boomeranglike motion of a wave packet injected into the crystal. For large-amplitude excitations on the same crystal, we invoke nonlinear effects. We numerically and experimentally demonstrate asymmetric wave transmission from two opposite ends of the crystal. Such tunable systems can thus inspire a novel class of designed materials to control linear and nonlinear elastic wave propagation in multiscales.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.