Abstract

We prove the local Hölder regularity of weak solutions to the mixed local nonlocal parabolic equation of the formut−Δu+P.V.∫Rnu(x,t)−u(y,t)|x−y|n+2sdy=0, where 0<s<1; for every exponent α0∈(0,1). Here, Δ is the usual Laplace operator. Next, we show that the gradients of weak solutions are also α-Hölder continuous for some α∈(0,1). Our approach is purely analytic and it is based on perturbation techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.