Abstract

In order to investigate the performance of Fe-Ni magnetic cores within embedded inductor in 3D package, a series of Fe-Ni films with compositions ranging from 15 wt% to 80 wt% iron were electrodeposited on 8-inch silicon wafer. The uniformity on brightness, phase structure and grain size of Fe-Ni magnetic films were investigated through SEM (scanning electron microscopy) and XRD (X-ray diffraction). A gradient growth behavior of fcc (face-centered cubic) and bcc (body-centered cubic) phase was revealed when Fe content ranges 50–75 wt% within Fe-Ni films, which can be attributed to the slightly faster growth rate of fcc phase. As also revealed in TEM (transmission electron microscope) observation, the fcc phase gradually spread over bcc phase region during the electroplating process, and formed an interface with a slight tilt angle to the substrate on the thickness direction. Several methods, such as increasing solution stirring, temperature or decreasing the current density, were proposed to restrain the gradient growth behavior of Fe-Ni film in wafer level.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.