Abstract

We study a nonlinear elliptic double obstacle problem with irregular data and establish an optimal Calderón–Zygmund theory. The partial differential operator is of the p-Laplacian type and includes merely measurable coefficients in one variable. We prove that the gradient of a weak solution is as integrable as both the gradient of assigned two obstacles and the nonhomogeneous divergence term under a small BMO semi-norm assumption on the coefficients in the other variables.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.