Abstract

We study the mean curvature flow of graphs both with Neumann boundary conditions and transport terms. We derive boundary gradient estimates for the mean curvature flow. As an application, the existence of the mean curvature flow of graphs is presented. A key argument is a boundary monotonicity formula of a Huisken type derived using reflected backward heat kernels. Furthermore, we provide regularity conditions for the transport terms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.