Abstract

This article studies a nonlinear parabolic equation on a complete weighted manifold where the metric and potential evolve under a super Perelman-Ricci flow. It derives elliptic gradient estimates of local and global types for the positive solutions and exploits some of their implications notably to a general Liouville type theorem, parabolic Harnack inequalities and classes of Hamilton type dimension-free gradient estimates. Some examples and special cases are discussed for illustration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.