Abstract

Globally eruptive harmful algal blooms (HABs) have caused numerous negative effects on aquatic ecosystem and human health. Conversion of HABs into biohythane via dark fermentation (DF) is a promising approach to simultaneously cope with environmental and energy issues, but low HABs harvesting efficiency and biohythane productivity severely hinder its application. Here we designed a gradient electro-processing strategy for efficient HABs harvesting and disruption, which had intrinsic advantages of no secondary pollution and high economic feasibility. Firstly, low current density (0.888-4.444 mA/cm2) was supplied to HABs suspension to harvest biomass via electro-flocculation, which achieved 98.59% harvesting efficiency. A mathematic model considering coupling effects of multi-influencing factors on HABs harvesting was constructed to guide large-scale application. Then, the harvested HABs biomass was disrupted via electro-oxidation under higher current density (44.44 mA/cm2) to improve bioavailability for DF. As results, hydrogen and methane yields of 64.46 mL/ (g VS) and 171.82 mL/(g VS) were obtained under 6 min electro-oxidation, along with the highest energy yield (50.1 kJ/L) and energy conversion efficiency (44.87%). Mechanisms of HABs harvesting and disruption under gradient electro-processing were revealed, along with the conversion pathways from HABs to biohythane. Together, this work provides a promising strategy for efficient disposal of HABs with extra benefit of biohythane production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call