Abstract

Current density imaging (CDI) is a technique that uses magnetic resonance imaging (MRI) to measure the distribution of externally applied electric current inside tissues. However, GDI processing is rendered inaccurate by the distortion caused by the nonlinearity of MRI gradient fields. The distortion interferes with the proper registration and the curl operation required for correct computation of current density vectors. To address this problem, a calibration phantom was imaged to determine the distortion and to generate calibration maps to correct the distorted current density images. A validation experiment involving a cylindrical phantom was performed to verify this method. Comparison of the distorted and corrected images reveals that both the registration and the curl operation are successfully corrected by this method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.