Abstract
The integration to steady state of many initial value ODEs and PDEs using the forward Euler method can alternatively be considered as gradient descent for an associated minimization prob- lem. Greedy algorithms such as steepest descent for determining the step size are as slow to reach steady state as is forward Euler integration with the best uniform step size. But other, much faster methods using bolder step size selection exist. Various alternatives are investigated from both theo- retical and practical points of view. The steepest descent method is also known for the regularizing or smoothing effect that the first few steps have for certain inverse problems, amounting to a finite time regularization. We further investigate the retention of this property using the faster gradient descent variants in the context of two applications. When the combination of regularization and accuracy demands more than a dozen or so steepest descent steps, the alternatives offer an advantage, even though (indeed because) the absolute stability limit of forward Euler is carefully yet severely violated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ESAIM: Mathematical Modelling and Numerical Analysis
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.