Abstract

Polymerization-induced self-assembly (PISA) is typically performed to produce polymer nanoparticles featuring specific assembly morphologies. Herein, we demonstrate the use of PISA as a synthetic tool to direct gradient copolymer synthesis. Specifically, we leverage hydrophobicity-induced reaction selectivity and the rate acceleration typically associated with polymer compartmentalization upon assembly during PISA to bias reaction selectivity. In the chain extension of a poly(ethylene glycol) macrochain transfer agent, the selectivity of diacetone acrylamide (DAAm) and N,N-dimethylacrylamide (DMA), two monomers with near-identical reactivity in water, can be modulated in situ such that DAAm is preferentially incorporated over DMA upon self-assembly. By increasing the feed ratio of DAAm, monomer differentiation can be further biased toward DAAm due to the locus of polymerization becoming increasingly hydrophobic. This change in selectivity affords the autonomous generation of DAAm-DMA gradient sequences, otherwise inaccessible without outside intervention. Finally, a mild hydrolysis protocol can then be employed to harvest DAAm-DMA sequences, yielding compositionally unique gradient copolymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.