Abstract

A gradient-constrained minimum network T is a minimum length network, spanning a given set of nodes N in space with edges whose gradients are all no more than an upper bound m. The nodes in T but not in N are referred to as Steiner points. Such networks occur in the underground mining industry where the typical maximal gradient is about 1:7 (? 0.14). Because of the gradient constraint the lengths of edges in T are measured by a special metric, called the gradient metric. An edge in T is labelled as a b-edge, or an m-edge, or an f-edge if the gradient between its endpoints is greater than, or equal to, or less than m respectively. The set of edge labels at a Steiner point is called its labelling. A Steiner point s with a given labelling is called labelled minimal if T cannot be shortened by a label-preserving perturbation of s. Furthermore, s is called locally minimal if T cannot be shortened by any perturbation of s even if its labelling is not preserved. In this paper we study the properties of labelled minimal Steiner points, as well as the necessary and sufficient conditions for Steiner points to be locally minimal. It is shown that, with the exception of one labelling, a labelled minimal Steiner point is necessarily unique with respect to its adjacent nodes, and that the locally minimal Steiner point is always unique, even though the gradient metric is not strictly convex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.