Abstract

In distributed synchronous gradient descent (GD) the main performance bottleneck for the per-iteration completion time is the slowest straggling workers. To speed up GD iterations in the presence of stragglers, coded distributed computation techniques are implemented by assigning redundant computations to workers. In this paper, we propose a novel gradient coding (GC) scheme that utilizes dynamic clustering, denoted by GC-DC, to speed up gradient calculations. Under time-correlated straggling behavior, GC-DC aims at regulating the number of straggling workers in each cluster based on the straggler behavior in the previous iteration. We numerically show that GC-DC provides significant improvements in the average completion time (of each iteration) with no increase in the communication load compared to the original GC scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.