Abstract

Background and aim: In recent years, research in the fields of brain-computer interfacing techniques and related areas are developing at a very rapid rate with the help of exploding of Artificial Intelligence, Machine Learning and Deep Learning. A new concept of Gradient Boosting has become popular research area among the researchers related to the field of automatic classification of Electroencephalograph (EEG) signals for predication of mental health issues like seizures. Methods: However effective feature extraction from EEG and accurately classify them with efficient classifiers is still an important task and attracted wide attention in this area. Therefore in this paper, we presented the detailed mathematical analysis of these methods and ensemble learnings based EEG signals classification method for seizures classification in EEG using Extreme Gradient Boosting Model such as Light Gradient Boosting Machine Learning (LGBM) and XGBoost. Results: Time-frequency domain based non-linear features are selected from preprocessed EEG Dataset, and PCA (Principal Component Analysis) is used for dimensionality reduction for features engineering, then optimized feature based training and testing is done for two class classification in ensemble learning method i.e. LGBM and XGBoost. Finally, both models are tested with dataset of University of Bonn, Germany to classify the signals. Conclusions: In addition this paper highlights the Correlation Analysis Methodology to Identify Strong Predictor and Attributes Correlation-based Attribute Ranking for the Feature Engineering which has proved to be more efficient in EEG signals Classification and provide comparative analysis with other existing models for performance evaluation in terms of accuracy which is 87.34 and 92.31 for LBGM and XGBoost, sensitivity of 85.21 and 90.18 and specificity of 83.0 and 90.04 for LBGM and XGBoost.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.