Abstract
Prediction models are traditionally optimized independently from decision-based optimization. Conversely, a ‘smart predict then optimize’ (SPO) framework optimizes prediction models to minimize downstream decision regret. In this paper we present dboost, the first general purpose implementation of smart gradient boosting for ‘predict, then optimize’ problems. The framework supports convex quadratic cone programming and gradient boosting is performed by implicit differentiation of a custom fixed-point mapping. Experiments comparing with state-of-the-art SPO methods show that dboost can further reduce out-of-sample decision regret.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.