Abstract
When performing maximum-likelihood quantum-state tomography, one must find the quantum state that maximizes the likelihood of the state given observed measurements on identically prepared systems. The optimization is usually performed with iterative algorithms. This paper provides a gradient-based upper bound on the ratio of the true maximum likelihood and the likelihood of the state of the current iteration, regardless of the particular algorithm used. This bound is useful for formulating stopping rules for halting iterations of maximization algorithms. We discuss such stopping rules in the context of determining confidence regions from log-likelihood differences when the differences are approximately chi-squared distributed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.