Abstract
In this article, the performance of gradient-based predictive pulse pattern control (GP <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$^{3}$</tex-math></inline-formula> C) is evaluated for a medium-voltage variable-speed drive consisting of a three-level neutral-point-clamped (NPC) inverter and a medium-voltage induction machine. To this end, real-time tests are performed in a hardware-in-the-loop (HIL) environment, which, along with extensive simulation studies, elucidate the potential of performance gains achieved with GP <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$^{3}$</tex-math></inline-formula> C. As shown, by manipulating offline-computed optimized pulse patterns (OPPs) in real time such that the stator current of the machine follows a precalculated optimal current trajectory, superior steady-state and transient performance can be achieved. Specifically, the current total demand distortion (TDD) is significantly reduced compared with established control methods, such as field-oriented control (FOC) with space vector modulation (SVM), while shorter settling times during transients are achieved. Finally, to complete the assessment of the control method of interest, real-time implementation aspects are discussed in detail.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.