Abstract

The increasing distributed and renewable energy resources and controllable devices in distribution systems make fast distribution system state estimation (DSSE) crucial in system monitoring and control. We consider a large multi-phase distribution system and formulate DSSE as a weighted least squares (WLS) problem. We divide the large distribution system into smaller areas of subtree structure, and by jointly exploring the linearized power flow model and the network topology, we propose a gradient-based multi-area algorithm to exactly and efficiently solve the WLS problem. The proposed algorithm enables distributed and parallel computation of the state estimation problem without compromising any performance. Numerical results on a 4,521-node test feeder show that the designed algorithm features fast convergence and accurate estimation results. Comparison with traditional Gauss-Newton method shows that the proposed method has much better performance in distribution systems with a limited amount of reliable measurement. The real-time implementation of the algorithm tracks time-varying system states with high accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.