Abstract
Multivariate functions encountered in high-dimensional uncertainty quantification problems often vary most strongly along a few dominant directions in the input parameter space. We propose a gradient-based method for detecting these directions and using them to construct ridge approximations of such functions, in the case where the functions are vector-valued (e.g., taking values in $\mathbb{R}^n$). The methodology consists of minimizing an upper bound on the approximation error, obtained by subspace Poincar\'e inequalities. We provide a thorough mathematical analysis in the case where the parameter space is equipped with a Gaussian probability measure. The resulting method generalizes the notion of active subspaces associated with scalar-valued functions. A numerical illustration shows that using gradients of the function yields effective dimension reduction. We also show how the choice of norm on the codomain of the function has an impact on the function's low-dimensional approximation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.