Abstract

This paper develops a gradient based and a least squares based iterative algorithms for solving matrix equation AXB + CX T D = F . The basic idea is to decompose the matrix equation (system) under consideration into two subsystems by applying the hierarchical identification principle and to derive the iterative algorithms by extending the iterative methods for solving Ax = b and AXB = F . The analysis shows that when the matrix equation has a unique solution (under the sense of least squares), the iterative solution converges to the exact solution for any initial values. A numerical example verifies the proposed theorems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.