Abstract

Protein-based biomaterials provide versatile scaffolds for generating functional surfaces for biomedical applications. However, tailoring the functional and biological properties of protein films remains a challenge. Here, we describe a high-throughput method to designing stable, functional biomaterials by combining inkjet deposition of protein inks with a nanoimprint lithography based methodology. The translation of the intrinsically charged proteins into functional materials properties was demonstrated through controlled cellular adhesion. This modular strategy offers a rapid method to produce customizable biomaterials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.