Abstract
We consider a class of non-linear dynamics on a graph that contains and generalizes various models from network systems and control and study convergence to uniform agreement states using gradient methods. In particular, under the assumption of detailed balance, we provide a method to formulate the governing ODE system in gradient descent form of sum-separable energy functions, which thus represent a class of Lyapunov functions; this class coincides with Csiszár’s information divergences. Our approach bases on a transformation of the original problem to a mass-preserving transport problem and it reflects a little-noticed general structure result for passive network synthesis obtained by B.D.O. Anderson and P.J. Moylan in 1975. The proposed gradient formulation extends known gradient results in dynamical systems obtained recently by M. Erbar and J. Maas in the context of porous medium equations. Furthermore, we exhibit a novel relationship between inhomogeneous Markov chains and passive non-linear circuits through gradient systems, and show that passivity of resistor elements is equivalent to strict convexity of sum-separable stored energy. Eventually, we discuss our results at the intersection of Markov chains and network systems under sinusoidal coupling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.