Abstract

Colloidal quantum well (CQW) based light emitting diodes (LEDs) possess extra-high theoretical efficiency, but their performance still lags far behind conventional LEDs due to severe exciton quenching and unbalanced charge injection. Herein, we devised a gradient composition CdxZn1-xS shell to address these issues. The epitaxial shell with gradient composition was achieved through controlling competition between Cd2+ and Zn2+ cations to preferentially bind to the anions S2-. Thus, exciton quenching was suppressed greatly by passivating defects and reducing nonradiative recombination, thereby achieving near-unity photoluminescence quantum yield (PLQY). The gradient energy level of the shell reduced the hole injection barriers and increased the hole injection efficiency to balance the charge injection of LEDs. As a result, the LEDs achieved a high external quantum efficiency (EQE) of 22.83%, luminance of 111,319 cd/m2 and a long operational lifetime (T95@100 cd/m2) over 6,500 h, demonstrating the state-of-the-art performance for the CQW based LEDs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.