Abstract

Cerebral blood flow (CBF) is regulated over a range of systemic blood pressures by the cerebral autoregulation (CA) control mechanism. This range lies within the lower and upper limits of autoregulation (LLA, ULA), beyond which blood pressure drives CBF, and CA function is considered impaired. A standard method to determine autoregulation limits noninvasively using NIRS technology is via the COx measure: a moving correlation index between mean arterial pressure and regional oxygen saturation. In the intact region, there should be no correlation between these variables whereas in the impaired region, the correlation index should approximate unity. In practice, however, the data may be noisy and/or the intact region may often exhibit a slightly positive relationship. This positive relationship may render traditional autoregulation limit calculations difficult to perform, resulting in the need for manual interpretation of the data using arbitrary thresholds. Further, the underlying mathematics of the technique are asymmetric in terms of the results produced for impaired and intact regions and are, in fact, not computable for the ideal case within the intact region. In this work, we propose a novel gradient adjustment method (GACOx) to enhance the differences in COx values observed in the intact and impaired regions. Results from a porcine model (N = 8) are used to demonstrate that GACOx is successful in determining LLA values where traditional methods fail. It is shown that the derived GACOx indices exhibit a mean difference between the intact/impaired regions of 1.54 ± 0.26 (mean ± SD), compared to 0.14 ± 0.10 for the traditional COx method. The GACOx effectively polarizes the COx data in order to better differentiate the intact and impaired zones and, in doing so, makes the determination of the LLA and ULA points a simpler and more consistent task. The method lends itself to the automation of the robust determination of autoregulation zone limits.

Highlights

  • Cerebral blood flow (CBF) is regulated over a range of systemic blood pressures (BPs) by the cerebral autoregulation (CA) control mechanism, which acts through complex myogenic, neurogenic, and metabolic mechanisms [1]

  • The position of the limit of autoregulation (LLA) determined from automated cerebral oximetry index (COx) and gradient-adjusted COx (GACOx) algorithms described above are indicated below each respective plot

  • It can be seen that both automated algorithmic methods, when used on the traditional COx plot, failed to identify a number of LLAs due to data not transiting below the threshold of 0.5

Read more

Summary

Introduction

Cerebral blood flow (CBF) is regulated over a range of systemic blood pressures (BPs) by the cerebral autoregulation (CA) control mechanism, which acts through complex myogenic, neurogenic, and metabolic mechanisms [1]. Unregulated flow, and impaired CA, occurs at the extremes of blood pressure (i.e. below the LLA and above the ULA), where cerebral vasocontrol is no longer able to adequately control vascular resistance in response to further blood pressure changes. In these impaired regions, the blood pressure drives the flow and is positively correlated with it; whereas in the intact region, cerebral control of blood flow is maintained in the event of blood pressure changes and no long-term correlation between the signals exists. The intact region displays a horizontal plateau indicating that no correlation between the parameters exists

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call