Abstract

An experiment was carried out to evaluate the impact of mixed Eimeria challenge on skeletal health of Hy-Line W-36 pullets. A total of 540, 16-day-old pullets were randomly allocated into 5 treatment groups, including a nonchallenged control. A mixed Eimeria species solution containing 50,000E. maxima, 50,000E. tenella, and 250,000E. acervulinaoocysts per mL was prepared and challenged to 1 group as a high-dose treatment. The 2-fold serial dilution was done to prepare the medium-high (25,000E. maxima; 25,000E. tenella; 125,000E. acervulina), the medium-low (12,500E. maxima; 12,500E. tenella; 62,500E. acervulina), and the low (6,250E. maxima; 6,250E. tenella; 31,250E. acervulina) dose treatments which were challenged to 3 corresponding groups, respectively. The mineral apposition rate (MAR) was measured from 0 to 14 d post inoculation (DPI) and 14 to 28 DPI using calcein injection. The microstructural architecture of the femur was analyzed using the Skyscan X-ray microtomography (microCT) on 6, 14, and 28 DPI. The results showed that the MAR decreased linearly with an increase in the challenged dose (P < 0.05) during 0 to 14 DPI. The results of microCT revealed that cortical and total BMD, BMC, bone volume (BV), and bone volume as a fraction of tissue volume (BV/TV) of femur decreased both linearly (P < 0.05). Conversely, the total number of pores increased linearly with an increase in challenge dosages on 6 and 14 DPI. Trabecular BMD, BV, BV/TV, trabecular number, and trabecular thickness decreased linearly with an increase in the challenge dosages (P < 0.05) on 6 DPI. Furthermore, Eimeria infection significantly increased the number of osteoclasts and osteoclastic activity (P=0.001). The result of this study suggests that the mixed Eimeria challenge negatively impacts the quality of skeletal health in a linear or quadratic manner with an increase in the concentration of Eimeria oocysts. The negative impact on long bone development might be due to malabsorption, nutrient deficiency during the infection, along with oxidative stress/inflammation disrupting the balance of osteoblastic and osteoclastic cells and their functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.