Abstract

This work presents a novel method for designing gradient-varying lattice structures based on explicit topology optimization. The proposed method employs a set of Moving Morphable Components (MMC) and NURBS-based partitioned coordinate mapping (PCM) functions to describe material distribution within the design domain and control points grid in the parametric space for local control of the lattice structure within each subdomain, thereby generating diverse microstructure topologies in different regions while being able to ensure clear structural boundaries and high-order smooth connections between adjacent microstructures. Since the optimization parameters include only the explicit geometric parameters of the components and the perturbation coefficients of the mapping function, the number of design variables is substantially smaller compared to existing algorithms. The proposed method can efficiently generate graded lattice structures for various loading conditions and graded-infill structures. Numerical results validate the effectiveness of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call